Exercise 3.3.10

If $f(x)=\left\{\begin{array}{ll}x^{2} & x<0 \\ e^{-x} & x>0\end{array}\right.$, what are the even and odd parts of $f(x)$?

Solution

Any function $f(x)$ can be written as

$$
\begin{aligned}
f(x) & =\frac{f(x)}{2}+\frac{f(-x)}{2}+\frac{f(x)}{2}-\frac{f(-x)}{2} \\
& =\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2} .
\end{aligned}
$$

This first fraction is the even part because swapping x with $-x$ doesn't change it, and this second fraction is the odd part because swapping x with $-x$ gives the same fraction with a minus sign. For the prescribed function, we have

$$
\begin{array}{lll}
\text { Even Part: } & \left\{\begin{array}{ll}
\frac{1}{2}\left[x^{2}+e^{-(-x)}\right] & x<0 \\
\frac{1}{2}\left[e^{-x}+(-x)^{2}\right] & x>0
\end{array}= \begin{cases}\frac{1}{2}\left(x^{2}+e^{x}\right) & x<0 \\
\frac{1}{2}\left(e^{-x}+x^{2}\right) & x>0\end{cases} \right. \\
\text { Odd Part: } & \left\{\begin{array}{ll}
\frac{1}{2}\left[x^{2}-e^{-(-x)}\right] & x<0 \\
\frac{1}{2}\left[e^{-x}-(-x)^{2}\right] & x>0
\end{array}=\left\{\begin{array}{ll}
\frac{1}{2}\left(x^{2}-e^{x}\right) & x<0 \\
\frac{1}{2}\left(e^{-x}-x^{2}\right) & x>0
\end{array} .\right.\right.
\end{array}
$$

